
COP 4710: Indexing Page 1 Mark Llewellyn ©

COP 4710: Database Systems
Spring 2006

CHAPTER 10 – INDEXING – Part 2

COP 4710: Database Systems
Spring 2006

CHAPTER 10 – INDEXING – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2006

COP 4710: Indexing Page 2 Mark Llewellyn ©

Static Hashing
• A bucket is a unit of storage containing one or more records (a

bucket is typically a disk block).

• In a hash file organization we obtain the bucket of a record
directly from its search-key value using a hash function.

• Hash function h is a function from the set of all search-key values
K to the set of all bucket addresses B.

• Hash function is used to locate records for access, insertion as
well as deletion.

• Records with different search-key values may be mapped to the
same bucket; thus entire bucket has to be searched sequentially to
locate a record.

COP 4710: Indexing Page 3 Mark Llewellyn ©

Example of Hash File Organization

• There are 10 buckets,

• The binary representation of the ith character is assumed to be the
integer i.

• The hash function returns the sum of the binary representations of
the characters modulo 10

– E.g. h(Perryridge) = 5 h(Round Hill) = 3 h(Brighton) = 3

Hash file organization of account file, using branch-name as key
(See figure in next slide.)

COP 4710: Indexing Page 4 Mark Llewellyn ©

Example of Hash File Organization

Hash file
organization of
account file, using
branch-name as key

(see previous slide
for details).

COP 4710: Indexing Page 5 Mark Llewellyn ©

Hash Functions
• Worst has function maps all search-key values to the same bucket; this

makes access time proportional to the number of search-key values in
the file.

• An ideal hash function is uniform, i.e., each bucket is assigned the
same number of search-key values from the set of all possible values.

• Ideal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual distribution
of search-key values in the file.

• Typical hash functions perform computation on the internal binary
representation of the search-key.
– For example, for a string search-key, the binary representations of all the

characters in the string could be added and the sum modulo the number of
buckets could be returned. .

COP 4710: Indexing Page 6 Mark Llewellyn ©

Handling of Bucket Overflows

• Bucket overflow can occur because of
– Insufficient buckets
– Skew in distribution of records. This can occur due

to two reasons:
• multiple records have same search-key value
• chosen hash function produces non-uniform distribution of

key values

• Although the probability of bucket overflow can
be reduced, it cannot be eliminated; it is handled
by using overflow buckets.

COP 4710: Indexing Page 7 Mark Llewellyn ©

Handling of Bucket Overflows (cont.)

• Overflow chaining – the overflow buckets of a given bucket are chained
together in a linked list.

• Above scheme is called closed hashing.
– An alternative, called open hashing, which does not use overflow buckets,

is not suitable for database applications.

COP 4710: Indexing Page 8 Mark Llewellyn ©

Hash Indices

• Hashing can be used not only for file organization, but also for
index-structure creation.

• A hash index organizes the search keys, with their associated
record pointers, into a hash file structure.

• Strictly speaking, hash indices are always secondary indices

– if the file itself is organized using hashing, a separate
primary hash index on it using the same search-key is
unnecessary.

– However, we use the term hash index to refer to both
secondary index structures and hash organized files.

COP 4710: Indexing Page 9 Mark Llewellyn ©

Example of Hash Index

COP 4710: Indexing Page 10 Mark Llewellyn ©

Deficiencies of Static Hashing
• In static hashing, function h maps search-key values to a fixed

set of B of bucket addresses.
– Databases grow with time. If initial number of buckets is too

small, performance will degrade due to too much overflows.
– If file size at some point in the future is anticipated and number of

buckets allocated accordingly, significant amount of space will be
wasted initially.

– If database shrinks, again space will be wasted.
– One option is periodic re-organization of the file with a new hash

function, but it is very expensive.

• These problems can be avoided by using techniques that allow
the number of buckets to be modified dynamically.

COP 4710: Indexing Page 11 Mark Llewellyn ©

Dynamic Hashing
• Good for database that grows and shrinks in size
• Allows the hash function to be modified dynamically
• Extendable hashing – one form of dynamic hashing

– Hash function generates values over a large range — typically b-bit
integers, with b = 32.

– At any time use only a prefix of the hash function to index into a table of
bucket addresses.

– Let the length of the prefix be i bits, 0 ≤ i ≤ 32.
– Bucket address table size = 2i. Initially i = 0
– Value of i grows and shrinks as the size of the database grows and

shrinks.
– Multiple entries in the bucket address table may point to a bucket.
– Thus, actual number of buckets is < 2i

• The number of buckets also changes dynamically due to coalescing
and splitting of buckets.

COP 4710: Indexing Page 12 Mark Llewellyn ©

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next slide for details)

COP 4710: Indexing Page 13 Mark Llewellyn ©

Use of Extendable Hash Structure
• Each bucket j stores a value ij; all the entries that point to the

same bucket have the same values on the first ij bits.

• To locate the bucket containing search-key Kj:
1. Compute h(Kj) = X

2. Use the first i high order bits of X as a displacement into bucket address
table, and follow the pointer to appropriate bucket

• To insert a record with search-key value Kj

– follow same procedure as look-up and locate the bucket, say j.

– If there is room in the bucket j insert record in the bucket.

– Else the bucket must be split and insertion re-attempted (next slide.)

• Overflow buckets used instead in some cases

COP 4710: Indexing Page 14 Mark Llewellyn ©

Updates in Extendable Hash Structure

• If i > ij (more than one pointer to bucket j)
– allocate a new bucket z, and set ij and iz to the old ij -+ 1.
– make the second half of the bucket address table entries pointing to j

to point to z
– remove and reinsert each record in bucket j.
– recompute new bucket for Kj and insert record in the bucket (further

splitting is required if the bucket is still full)
• If i = ij (only one pointer to bucket j)

– increment i and double the size of the bucket address table.
– replace each entry in the table by two entries that point to the same

bucket.
– recompute new bucket address table entry for Kj

Now i > ij so use the first case above.

To split a bucket j when inserting record with search-key value Kj:

COP 4710: Indexing Page 15 Mark Llewellyn ©

Updates in Extendable Hash Structure
(cont.)

• When inserting a value, if the bucket is full after several splits
(that is, i reaches some limit b) create an overflow bucket instead
of splitting bucket entry table further.

• To delete a key value,
– locate it in its bucket and remove it.
– The bucket itself can be removed if it becomes empty (with

appropriate updates to the bucket address table).
– Coalescing of buckets can be done (can coalesce only with a

“buddy” bucket having same value of ij and same ij –1 prefix, if it
is present)

– Decreasing bucket address table size is also possible
• Note: decreasing bucket address table size is an expensive

operation and should be done only if number of buckets
becomes much smaller than the size of the table

COP 4710: Indexing Page 16 Mark Llewellyn ©

Use of Extendable Hash Structure: Example

Initial Hash structure, bucket size = 2

COP 4710: Indexing Page 17 Mark Llewellyn ©

Example (cont.)

• Hash structure after insertion of one Brighton and two
Downtown records

COP 4710: Indexing Page 18 Mark Llewellyn ©

Example (cont.)

Hash structure after insertion of Mianus record

COP 4710: Indexing Page 19 Mark Llewellyn ©

Example (cont.)

Hash structure after insertion of three Perryridge records

COP 4710: Indexing Page 20 Mark Llewellyn ©

Example (cont.)

• Hash structure after insertion of Redwood and Round Hill records

COP 4710: Indexing Page 21 Mark Llewellyn ©

Extendable Hashing vs. Other Schemes
• Benefits of extendable hashing:

– Hash performance does not degrade with growth of file
– Minimal space overhead

• Disadvantages of extendable hashing
– Extra level of indirection to find desired record
– Bucket address table may itself become very big (larger than

memory)
• Need a tree structure to locate desired record in the

structure!
– Changing size of bucket address table is an expensive operation

• Linear hashing is an alternative mechanism which avoids these
disadvantages at the possible cost of more bucket overflows

COP 4710: Indexing Page 22 Mark Llewellyn ©

Comparison of Ordered Indexing and Hashing
• Cost of periodic re-organization

• Relative frequency of insertions and deletions

• Is it desirable to optimize average access time at the expense
of worst-case access time?

• Expected type of queries:

– Hashing is generally better at retrieving records having a
specified value of the key.

– If range queries are common, ordered indices are to be
preferred

COP 4710: Indexing Page 23 Mark Llewellyn ©

Multiple-Key Access
• Use multiple indices for certain types of queries.
• Example:

select account-number
from account
where branch-name = “Perryridge” and balance = 1000

• Possible strategies for processing query using indices on single
attributes:
1. Use index on branch-name to find accounts with balances of $1000;

test branch-name = “Perryridge”.
2. Use index on balance to find accounts with balances of $1000; test

branch-name = “Perryridge”.
3. Use branch-name index to find pointers to all records pertaining to

the Perryridge branch. Similarly use index on balance. Take
intersection of both sets of pointers obtained.

COP 4710: Indexing Page 24 Mark Llewellyn ©

Indices on Multiple Attributes
• Suppose we have an index on combined search-key(branch-name,

balance).
• With the where clause

where branch-name = “Perryridge” and balance = 1000
the index on the combined search-key will fetch only records that
satisfy both conditions.
Using separate indices in less efficient — we may fetch many records
(or pointers) that satisfy only one of the conditions.

• Can also efficiently handle
where branch-name - “Perryridge” and balance < 1000

• But cannot efficiently handle
where branch-name < “Perryridge” and balance = 1000
May fetch many records that satisfy the first but not the second
condition.

